Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense.

نویسندگان

  • H Küpper
  • E Lombi
  • F J Zhao
  • G Wieshammer
  • S P McGrath
چکیده

Nickel uptake and cellular compartmentation were investigated in three Ni hyperaccumulators: Alyssum bertolonii (Desv), Alyssum lesbiacum (Candargy) and Thlaspi goesingense (Hálácsy). The three species showed similar hyperaccumulation of Ni, but T. goesingense was less tolerant to Ni than the two Alyssum species. An addition of 500 mg Ni kg(-1) to a nutrient-rich growth medium significantly increased shoot biomass of all three species, suggesting that the Ni hyperaccumulators have a higher requirement for Ni than normal plants. Energy-dispersive X-ray microanalysis (EDXA) was performed on frozen-hydrated tissues of leaves (all species) and stems (Alyssum only). In all species analysed, Ni was distributed preferentially in the epidermal cells, most likely in the vacuoles, of the leaves and stems. In stems, there was a second peak of Ni in the boundary cells between the cortical parenchyma and the vascular cylinder. The non-glandular trichomes on the leaf surfaces of the two Alyssum species were highly enriched with Ca, but contained little Ni except in the base. In the leaves of T. goesingense, the large elongated epidermal cells contained more Ni than the cells of the stomatal complexes. The role of cellular compartmentation in Ni hyperaccumulation is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea.

Exposure of the hyperaccumulator Alyssum lesbiacum to nickel (Ni) is known to result in a dose-dependent increase in xylem sap concentrations of Ni and the chelator free histidine (His). Addition of equimolar concentrations of exogenous L-His to an Ni-amended hydroponic rooting medium enhances Ni flux into the xylem in the nonaccumulator Alyssum montanum, and, as reported here, in Brassica junc...

متن کامل

Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants.

Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and its contribution to Ni tolerance, tra...

متن کامل

Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil

The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soi...

متن کامل

Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators.

Worldwide more than 400 plant species are now known that hyperaccumulate various trace metals (Cd, Co, Cu, Mn, Ni, and Zn), metalloids (As) and nonmetals (Se) in their shoots. Of these, almost one-quarter are Brassicaceae family members, including numerous Thlaspi species that hyperaccumulate Ni up to 3% of there shoot dry weight. We observed that concentrations of glutathione, Cys, and O-acety...

متن کامل

Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale.

Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 52 365  شماره 

صفحات  -

تاریخ انتشار 2001